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EXECUTIVE SUMMARY 

Connected automated vehicles (CAVs) are typically equipped with communication devices (e.g., 
dedicated short range communications (DSRC)) and on-board sensors (e.g., Radar, Lidar, 
Camera, etc.). Communication devices would enable the exchange of real-time information 
between vehicles and infrastructures via vehicle-to-vehicle (V2V) and vehicle-to-infrastructure 
(V2I) channels. Sensors equipped in vehicles are providing various vehicle sensor data (VSD) 
such as the CAV’s GPS location, speed and moving direction (trajectory). Existing studies have 
shown the effectiveness of using CAV trajectories as input in many traffic control models.  

However, it can be expected that CAVs and human-driven vehicles (HVs) will co-exist on the 
transportation network in a long period. Hence, to support various traffic control tasks, it is 
critical to develop a reliable model to understand the real-time traffic pattern in a mixed CAV 
and HV environment. To satisfy such needs, this project firstly introduces a novel macroscopic 
traffic flow model which treats CAVs and HVs as separate groups, where a new set of factors are 
introduced to represent the speed change of HVs due to following CAVs in the traffic stream. 
Then grounded on the traffic flow model, an optimization function will make real-time 
adjustment of CAVs’ desired speeds for minimizing the total freeway travel delays.  

Selecting a segment of I-15 in Salt Lake City as the study site, the research team  conducts 
extensive simulation experiments to evaluate highway performance under different demand 
levels and CAV penetration rates. Corresponding data analysis reveals that there should exist a 
critical CAV ratio that can greatly reduce the speed difference between CAVs and HVs in the 
traffic stream, given the demand pattern. Further discussions have highlighted the need of setting 
up guidance on highway capacity analysis under the CAV environment. 

1.0 INTRODUCTION 

1.1 RESEARCH BACKGROUND 

By exchanging real-time information between vehicles and infrastructures, CV applications have 
demonstrated significant benefits on improving the safety and mobility of transportation and 
reducing emissions. Along another track, current autonomous vehicles (AVs) mostly rely on 
different types of sensors. Ultrasonic, radar and camera technologies allow AVs to observe and 
analyze their surroundings and to automatically take suitable driving behaviors (e.g., 
deceleration, acceleration, lane changing, etc.). When connectivity is added into the AV-based 
system, the vehicles become connected and automated vehicles (CAVs) which are equipped with 
both on-board units (OBUs) for communications and sensors for detection. Specifically, the 
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added V2V technology allows CAVs to exchange critical vehicle status data such as vehicle 
speeds, location and acceleration . and the V2I platform supports vehicles’ communications with 
infrastructure (e.g., receives signal phase and timing data from signal controller). Since CV 
technology brings unparalleled benefits, many researchers have investigated its application in 
various traffic control domains. In addition, some transportation agencies have started to deploy 
CV technologies in real-world applications during the past few years. However, it may take a 
long period to reach a fully CVs environment and CVs must co-exist with human-driven vehicles 
(HVs) on the roads at the current stage. Hence, to support many traffic control tasks, it is critical 
to develop a reliable traffic state estimation model that can fully capture the mixed CAV and HV 
traffic pattern. 

Traffic state estimation has long been identified as an important task within a traffic control loop. 
Freeway traffic state estimation refers to estimating all variables of traffic flow at the current 
time instant based on real-time traffic measurements. A reliable traffic flow estimation would be 
the foundation of good traffic management strategies. Since speed control is often applied to 
CAVs in most applications, changing of CAV motion states would inevitably affect the speed of 
the whole traffic stream as CAVs and HVs are sharing the roads. Figure 1 shows the vehicle 
speed distribution under different two simulation cases. Notably, case 1 was simulated with 
mixed traffic and CAVs are operated with advisory speeds (slightly lower than the average 
traffic speed), while case 2 was simulated with HVs only. The resulting comparisons indicate 
that despite speed control is only performed on CAVs, the average speed of HVs was also 
reduced. Hence, one of the most challenging issues in traffic state estimation will be how to 
effectively capture the interactions between CAVs and HVs under the mixed traffic environment. 
To address such needs, this project aims to develop a novel modeling approach by treating them 
as separate groups. In addition, a new set of factors is introduced to represent the speed change 
of HVs due to following CVs in the traffic stream. Then an optimization function, grounded on 
the traffic flow model, will be implemented to determine the optimal desired speeds of CAVs in 
the next control period, with the objective of minimizing total freeway travel time. 

 
 

Figure 1.1: Time-dependent speed distribution of vehicles 

In summary, emerging CAV technologies offer the potential to utilize the real-time roadway 
traffic information to improve traffic safety, efficiency and stability. These benefits of CV 

Ave speed of CAVs (case 1) 
Ave speed of HVs (case 1) 
Ave speed of HVs (case 2) 

 



3 
 

technologies are usually achieved by optimal CAV speed control. In the control loop, 
infrastructures provide advisory speeds to CAVs to follow and CAVs send their trajectory data 
and safety information to infrastructures for future feedback operations. However, despite some 
existing studies that proved the effectiveness of improving highway capacity performance by 
optimally controlling CAVs, its penetration rate plays a key role in affecting the system’s 
performance. This is explicated by how HV drivers would respond to the speed change of their 
nearby CAVs. Grounded in preliminary simulation studies, it can be observed that HVs will 
follow CAVs in the traffic stream when they have no sufficient gap to make lane changes (e.g., 
under congested conditions or with a high CAV penetration rate). In such cases, the control of 
CAVs will concurrently affect HVs’ speeds. However, under the conditions of light traffic or low 
CAV rate, HVs can easily change lanes to avoid following CAVs. It may even increase the 
potential crash rate due to increased lane-changing maneuvers. Therefore, given a congestion 
level, there should exist a critical CAV penetration rate for each highway segment specified with 
its capacity. If the CAV rate can be above the critical value, the effectiveness of CAV-based 
control algorithms will be maximized. Grounded in the developed CV optimal speed control 
model, this paper further explores the existence of a critical CV penetration rate and study its 
impact on highway capacity. 

1.2 PROJECT TASKS 

This project includes the following five key tasks: 

• Literature review, where our research team has conducted comprehensive reviews on 
research in various domains such as variable speed limit control, CAV technology 
development, and traffic control applications under a CAV environment. 

• Traffic state estimation model development, where a macroscopic traffic flow model is 
formulated to capture the speed interactions between CAVs and HVs in the mixed traffic 
pattern. 

• CAV desired speed optimization model development, where a rolling horizon control 
concept is implemented to optimize CAVs’ desired speed in the following control period, 
using the objective of minimizing total freeway travel time. 

• Highway capacity analysis under a CAV environment, where we further examine the 
change of highway performance under different congestion levels and explore the 
sensitivity of impacts by the CAV penetration rate. 

• Experimental tests, where all proposed control models are tested on a selected study site, 
a freeway segment on I-15 in Salt Lake City. 
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2.0 LITERATURE REVIEW 

2.1 VARIABLE SPEED LIMIT CONTROL  

Despite many recent research efforts that have been attracted to CAV-related optimal speed 
control, a similar concept but on HVs only, named variable speed limit (VSL) control, has 
already been studied extensively in the literature. VSL is initially designed to reduce the speed 
difference on some hazardous highway segments so as to decrease the rear-end collision rate and 
improve traffic safety (Anund et al., 2009). Recently, it has been recognized that VSL may offer 
the potential to mitigate traffic congestion and improve traffic efficiency at work zones and 
freeway bottlenecks. Through dynamically changed speed limits along a controlled segment, 
VSL can smooth the speed transition between the upstream and congested downstream flows, 
and minimize the impact of shockwave on traffic conditions. The mitigation of traffic speed 
variance can facilitate traffic flows to better utilize the available roadway capacity during 
congestion periods. 

Mainly for the work-zone safety concerns, a set of studies (Lyles et al., 2003; Lin et al., 2004; 
Kang, 2006; Kwan et al., 2015; Yang et al., 2016; Lin et al., 2018) has been conducted to explore 
the potential of improving traffic efficiency with the VSL control. Those preliminary but 
promising results have motivated more researchers to investigate the applicability of using VSL 
for recurrently congested roadway segments. Despite the potential benefits of VSL for work- 
zone operations, design of reliable algorithms to ensure its benefits in contending with recurrent 
congestion remains a challenging issue. For example, the Dutch VSL experiment (Smulders, 
1990) showed no improvement in capacity which may be attributed to its advisory purpose. 
More recently, Chang et al. (2011) reported a successful implementation of an integrated VSL 
and travel time information system on MD 100 near Coca-Cola Drive, which achieved travel 
time and throughput improvements. 
Along the same line, a study on the I-495 Capital Beltway (Sisiopiku et al., 2009) revealed that 
VSL can delay the formation of bottleneck congestion. Abdel-Aty et al. (2008) developed a VSL 
system for I-4 through Orlando, FL, that was reported to reduce both crash risk and travel time 
under a simulated environment. Hegyi et al. (2006) modified the METANET macroscopic traffic 
flow model to incorporate the VSL effect and adopted the model predictive control (MPC) 
approach to determine the optimal speed limit. Papageorgiou et al. (2008) and Carlson et al. 
(2010) analyzed the effect of VSL on aggregated traffic flow behavior from the theoretical 
perspective, and proposed an open-loop integrated optimal control framework to coordinate ramp 
metering with VSL control. Their simulation results show a reduction of 15 percent in total travel 
time. Most recently, Hadiuzzaman and Qiu (2012) proposed a modified CTM-based VSL 
control, and also used the MPC method to dynamically change the speed limit in real time. 
Similar logic has been implemented by Yang et al. (2015), which uses the Extended Kalman 
Filter for estimation correction. 
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2.2 CAV TECHNOLOGY 

Reliable and seamless V2V and V2I data communication is the critical component of CV 
technology applications (Dey et al., 2016). Various wireless technologies have been used to 
support the data transfer requirement of diverse ITS applications, such as Bluetooth, ZigBee, 
Passive RFID, Ultra Wide Bandwidth (UWB) and mmWave communications (Lu et al., 2014). 
The selection of a wireless communication option relies on the accessibility and feasibility of 
wired and wireless communication options and data transfer requirement of particular 
applications. While existing ITS applications are infrastructure-based (i.e., installed at the 
roadside locations) (Silva et al., 2017), the next major deployment of wireless technologies 
within the transportation grid is the high-speed wireless communication between moving 
vehicles and transportation infrastructure.  

To meet the requirements of CV applications (e.g., fast acquisition, low latency with high 
reliability, highest security and privacy standards), the Federal Communications Commission 
had previously allocated the 5.9 GHz band (5.85GHz to 5.925GHz) for V2V/V2I 
communications, also known as dedicated short range communications (DSRC) (Kenney, 2011; 
Xu et al., 2004; Jiang et al., 2006; Yin et al., 2004; Taliwal et al., 2004). These communications 
include that of safety messaging, geographic locations, sensor data (e.g., tire pressure), which 
involves periodic broadcast of time-sensitive status information by vehicles (Bai et al., 2010; Oh 
et al., 1999; Wang et al., 2008; Ma et al., 2009). 

On the other hand, AVs are operated with the support of various vehicle automation functions, 
which rely on real-time sensor data for making maneuver decisions (e.g., acceleration, 
deceleration, lane changes). In current applications three types of sensors, including cameras, 
radars and LIDARs, are commonly used for detections (Huang et al., 2018). According to the 
capability of SAE, vehicle automation functions have been categorized into six levels (Andersen, 
2017), as shown in Figure 2.1. 

 

Figure 2.1: Classification of AV auotmation levels 
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In summary, the vehicular network combines wireless communication with sensing devices 
installed on vehicles. With in-vehicle sensing technologies, CAV-based systems are capable of 
collecting abundant driving data, such as speed and engine parameters, from a large number of 
vehicles. Such data are characterized as large volume, multifrequency, and multisource, which 
largely reflect the vehicle and the road traffic status and thereby are widely used to adjust CAVs’ 
speed by automation functions.  

2.3 TRAFFIC CONTROL APPLICATIONS WITH CAV  

CAV technology has the potential to enable precise control of individual vehicle trajectories 
(Ahn et al., 2013; Wang et al., 2014; Huang et al., 2018). With such trajectory control, vehicles 
can either adjust their driving behavior (e.g., speed, deceleration, acceleration) based on the 
approaching traffic signal timing plan (Kamalanathsharma et al., 2013) or coordinate with other 
vehicles to pass through an intersection during a green light (Dresner and Stone, 2008; Lee and 
Park, 2012).  Notably, the car-following models under a CAV environment are commonly 
treated as the foundation of developing CAV traffic control systems. A group of studies, from 
the system control point of view, have contributed various methods to making CAV-based 
control more available for field deployments. Representatives of those include frequency-domain 
methods (Cook, 2007; Monteil et al., 2014), linear robust control theories (Hao and Barooah, 
2013; Lin et al., 2012), and Lyapuno theory (Oncu et al., 2014).  

To characterize CAVs’ behaviors and their potential impact on traffic streams, existing studies 
can be categorized into two types of efforts (Wei et al., 2017). The first type of studies (Horowitz 
and Varaiya, 2000; Gong et al., 2016) focus on understanding interactions between CAVs and 
regular vehicles by examining how CAV dynamics can change traffic characteristics. This is 
induced by the significantly different driving behaviors between humans and vehicle automation 
functions. The second type aims to evaluate the change of roadway capacity due to CAVs 
deployment (Ghiasi et al., 2017). For example, shorter CAV reaction time would allow closer 
spacing between cars and the roadway capacity could be consequently increased (Bose and 
Ioannou, 1999). More recently, based on the simulation of a network with 16 intersections, Lioris 
et al. (2017) have proved that platooning of CAVs can even double the throughput on the roads. 

Quite a few existing studies focused on addressing the individual vehicle trajectory control (He 
et al., 2015; Wu et al., 2015;). Dynamic programming (DP)-based algorithm lays the theoretical 
foundation for single-vehicle trajectory optimization. However, DP-based trajectory optimization 
is oftentimes inefficient for real-world application due to its computational complexity, let alone 
applying to the scenarios involving multiple-vehicle trajectories control.  

To fill this research gap, Flint et al. (2002) proposed an approximate DP algorithm for multiple 
AVs to move cooperatively. McNaughton (2011) developed a five-dimensional search space 
formulation for AV motion planning. More recently, Zhou et al. (2017) presented a parsimonious 
shooting heuristic (SH) algorithm that can effectively smooth trajectories of a stream of CAVs 
approaching a signalized intersection. A time geography-oriented approach is combined with 
Newell’s simplified car-following model to control a detailed acceleration profile. Other studies 
also incorporated Newell’s simplified car-following model for CAV platooning strategy (Bang 
and Ahn, 2017). Following their preceding study (Zhou et al., 2017), Ma et al. (2017) discussed 
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the SH algorithm on optimality and computational complexity. They proposed a framework for 
CAVs under centralized control for multitrajectory optimization with only a few control 
variables. Wei et al. (2017) developed mathematically rigorous optimization models and 
computationally tractable algorithms to model the dynamic process of tight platoon formation 
and system-level control for AVs. The vehicle trajectories are optimized subject to minimal safe 
driving distance between cars, as well as different entrance and exit boundary conditions. 

3.0 METHODOLOGY 

3.1 CONTROL FRAMEWORK 

The connectivity technology of CAVs allows the exchange of traffic information between 
vehicles and infrastructure. The vehicle automation function will automatically adjust the speed 
in real time according to the desired travel speed and distance to the vehicle ahead. As shown in 
Figure. 3.1, roadside traffic sensors can collect the traffic data such as flow rate (number of 
vehicles) and average vehicle speed. Through the communication infrastructure, data from 
multiple neighboring sensors will be recorded and sent to CAVs (V2I). Then the computational 
devices on CAVs can perform computational works based on the real-time data. For the need of 
vehicle automation, it always requires reliable sensors (e.g., LiDAR, camera) on automated 
vehicles. With the integration and coordination of different types of sensors, the automated 
vehicles can be aware of the locations and speeds of surrounding vehicles. Such detected 
information can be further sent to other nearby CAVs through the V2V communication platform.  

 

Figure 3.1: CAV operational environment 

Using the real-time CAV trajectory data and roadside sensor data as input, the operational 
structure of the proposed vehicle sensor data (VSD)-based CAV speed control system includes 
the following three principal components: 

1) Traffic state model: Given the upstream flow rate, the on-ramp and off-ramp flow rate, 
the model will function to predict the traffic state evolution in each freeway subsection for the 
case of no-CAV involved. An optimization model grounded in such a model will serve as a 
comparison for evaluating the effectiveness of the proposed CAV control system.  
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2) Mixed traffic flow model: This new model aims to capture the speed impact of CAVs on 
HVs in mixed flow. The model is an extension of a conventional traffic state model by dividing 
CAVs and HVs as separate groups.  

3) Optimization model: Based on the estimated conditions from an embedded traffic flow 
model, the system will execute the optimization model to predict the traffic state in the next 
prediction horizon and yield optimal desired speeds of CAVs. 

Notably, the proposed framework is based on an assumption that CAVs would be operated with 
suggested desired speeds and HVs are sharing road lanes with CAVs in the traffic stream. Based 
on the optimal desired speed profile along the freeway, CAVs would make real-time adjustments 
according to their distance to nearby vehicles. 

3.2 TRAFFIC STATE ESTIMATION 

3.2.1 Macroscopic Traffic Flow Model – No CAV Involved 

As shown in Figure. 3.2, the target freeway segment is conceptually divided into N subsections 
with a unit length of ΔL. Notably, the ΔL should be sufficiently long so that vehicles cannot pass 
one subsection during one-time interval k. Moreover, each subsection can have at most one on-
ramp and one off-ramp. For convenience of discussion, variables and parameters used in this 
model are listed in the following table: 

Table 3.1: Traffic state variables and parameters 
Variables and parameters Definitions 
qi(k) Transition flow rate entering segment (i+1) from segment i during interval k; 
ri(k) On-ramp flow rate entering segment i during interval k; 
si(k) Off-ramp flow rate leaving segment i during interval k; 
di(k) Mean traffic density per lane in segment i during interval k; 
ui(k) Mean speed in segment i during interval k; 
γ,τ,κ,a Traffic state model parameters; 
ΔL Length of each freeway segment; 
λi Number of lanes in subsection i; 
 

For each subsection i, the mean density, dj(k), can be determined by the difference between the 
input and output flows as follows: 

𝑑𝑑𝑖𝑖(𝑘𝑘 + 1) = 𝑑𝑑𝑖𝑖(𝑘𝑘) +
∆𝑇𝑇
𝜆𝜆𝑖𝑖Δ𝐿𝐿

[𝑞𝑞𝑖𝑖−1(𝑘𝑘) − 𝑞𝑞𝑖𝑖(𝑘𝑘) + 𝑟𝑟𝑖𝑖(𝑘𝑘) − 𝑠𝑠𝑖𝑖(𝑘𝑘)]        
 (3-1) 
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1 i. . .2 . . . . . .N+1NInitial

On-ramp Off-ramp

 

Figure 3.2: Freeway segmentations 

For dynamically updating the average speed, ui(k), a well-developed equation proposed by the 
METANET model is adopted and shown as follows: 

Δ𝑇𝑇 Δ𝑇𝑇
𝑢𝑢𝑖𝑖(𝑘𝑘 + 1) = 𝑢𝑢𝑖𝑖(𝑘𝑘) + [𝑉𝑉𝑖𝑖{𝑑𝑑𝑖𝑖(𝑘𝑘)}− 𝑢𝑢𝑖𝑖(𝑘𝑘)] + 𝑢𝑢 𝑢𝑢𝜏𝜏 𝐿𝐿 𝑖𝑖(𝑘𝑘)[ 𝑖𝑖−1(𝑘𝑘) − 𝑢𝑢𝑖𝑖(𝑘𝑘)]

𝑖𝑖 𝑖𝑖

𝛾𝛾𝑖𝑖Δ𝑇𝑇 [𝑑𝑑𝑖𝑖+1(𝑘𝑘) − 𝑑𝑑
− 𝑖𝑖(𝑘𝑘)]

   𝜏𝜏𝑖𝑖Δ𝐿𝐿 [𝑑𝑑𝑖𝑖(𝑘𝑘) + 𝜅𝜅]        (3-2) 

where, V[di(k)] is the static speed for segment i at time k with respect to the density di(k): 

1 𝑑𝑑 (𝑘𝑘) 𝑎𝑎

𝑉𝑉[𝑑𝑑𝑖𝑖(𝑘𝑘)]  = 𝑢𝑢 xp �− � 𝑖𝑖
𝑓𝑓e � � 𝑎𝑎 𝑑𝑑𝑐𝑐𝑟𝑟        (3-3) 

Also, the relationship between flow, density and speed is given by the following: 

𝑞𝑞𝑖𝑖(𝑘𝑘) = 𝑑𝑑𝑖𝑖(𝑘𝑘)𝑢𝑢𝑖𝑖(𝑘𝑘)𝜆𝜆𝑖𝑖                                                 (3-4) 

Using the inflow rate that can be collected by detectors installed at the upstream segment and on-
ramps, one can directly use Equations 1-4 to estimate and predict the traffic state evolution on 
the target freeway segment.   

3.2.2 Mixed Traffic Flow Formulations 

Under the mixed CAV and HV environment, the proposed system would yield optimal desired 
speeds to CAVs through the I2V communication platform. As CAVs and HVs are sharing the 
roadways, it can be expected that the speed change of CAVs would inevitably affect the speeds 
of nearby HVs, which is usually called “CAV impact.” Notably, such an impact would be quite 
sensitive to the traffic congestion level and CAV penetration rate. However, modeling the 
interactions between CAV and HV is still an unknown territory and the conventional traffic state 
model which treats all vehicles as a group may fall short of accuracy. 

In this project, the proposed system utilized a novel mixed traffic state model which accounts for 
two different vehicle classes (CAVs and HVs) during the operational period. For convenience of 
discussion, variables and parameters used in this model are listed in the following table: 

Table 3.2: Traffic state variables and parameters for mixed flow formulation 
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Variables and parameters Definitions 
dj,i(k) The density of class j vehicles for segment i at time step k; 
uj,i(k) The mean speed of class j vehicles for segment i at time step k; 
Vj[dj,i(k)] The static speed of class j vehicles for segment i at time k with respect to the    

density of class j vehicles; 
qj,i,out(k) The flow rate of class j vehicles leaving segment i to downstream segment 

i+1 between steps (k, k+1); 
qj,i,in(k) The flow rate of class j vehicles entering segment i from upstream segment i-

1 between steps (k, k+1); 
rj,i(k) The flow rate of class j vehicles entering segment i from on-ramps between 

steps (k, k+1); 
sj,i(k) The flow rate of class j vehicles leaving segment i from off-ramps between 

steps (k, k+1); 
Li The length of segment i; 
λi The number of lanes of segment i; 
ΔT The length of update time interval; 
uf,ji The free-flow speed of segment i for class j vehicles; 
dcr,ji The critical density of segment i for class j vehicles; 
aji The speed exponent term of segment i for class j vehicles; 
τi,γi,κi,βi The parameters in the dynamic speed equations of segment i; 
 

Following the same notion of the conventional traffic flow model, the mixed traffic flow model 
can be expressed as follows: 

𝑑𝑑𝑗𝑗 ,𝑖𝑖(𝑘𝑘 + 1) = 𝑑𝑑𝑗𝑗 ,𝑖𝑖(𝑘𝑘) +
∆𝑇𝑇
𝐿𝐿𝑖𝑖𝜆𝜆𝑖𝑖

[𝑞𝑞𝑗𝑗 ,𝑖𝑖 ,𝑖𝑖𝑖𝑖 (𝑘𝑘) − 𝑞𝑞𝑗𝑗 ,𝑖𝑖 ,𝑜𝑜𝑢𝑢𝑜𝑜 (𝑘𝑘) + 𝑟𝑟𝑗𝑗 ,𝑖𝑖(𝑘𝑘) − 𝑠𝑠𝑗𝑗 ,𝑖𝑖(𝑘𝑘)] 
(3-5) 

𝑞𝑞𝑗𝑗 ,𝑖𝑖 ,𝑖𝑖𝑖𝑖 (𝑘𝑘) = 𝑞𝑞𝑗𝑗 ,𝑖𝑖−1,𝑜𝑜𝑢𝑢𝑜𝑜 (𝑘𝑘)     (3-6) 

𝑉𝑉𝑗𝑗 ,𝑖𝑖 �𝑑𝑑𝑗𝑗 ,𝑖𝑖(𝑘𝑘)� = 𝑢𝑢𝑓𝑓 ,𝑗𝑗𝑖𝑖 exp �−
1
𝑎𝑎𝑗𝑗𝑖𝑖

�
𝑑𝑑1,𝑖𝑖(𝑘𝑘) + 𝑑𝑑2,𝑖𝑖(𝑘𝑘)

𝑑𝑑𝑐𝑐𝑟𝑟 ,𝑗𝑗𝑖𝑖
�
𝑎𝑎𝑗𝑗𝑖𝑖

� 
(3-7) 

𝑢𝑢1,𝑖𝑖(𝑘𝑘 + 1) = 𝑢𝑢(𝑘𝑘) +
Δ𝑇𝑇
𝜏𝜏𝑖𝑖
�𝑉𝑉1,𝑖𝑖(𝑘𝑘) − 𝑢𝑢1,𝑖𝑖(𝑘𝑘)� +

Δ𝑇𝑇
𝐿𝐿𝑖𝑖
𝑢𝑢1,𝑖𝑖(𝑘𝑘)�𝑢𝑢1,𝑖𝑖−1(𝑘𝑘) − 𝑢𝑢1,𝑖𝑖(𝑘𝑘)�

−
𝛾𝛾𝑖𝑖Δ𝑇𝑇
𝜏𝜏𝑖𝑖𝐿𝐿𝑖𝑖

�𝑑𝑑1,𝑖𝑖+1(𝑘𝑘) + 𝑑𝑑2,𝑖𝑖+1(𝑘𝑘) − 𝑑𝑑1,𝑖𝑖(𝑘𝑘) − 𝑑𝑑2,𝑖𝑖(𝑘𝑘)�
�𝑑𝑑1,𝑖𝑖(𝑘𝑘) + 𝑑𝑑2,𝑖𝑖(𝑘𝑘)�

−
𝛽𝛽𝑖𝑖Δ𝑇𝑇
𝜏𝜏𝑖𝑖

�𝑉𝑉1,𝑖𝑖(𝑘𝑘) − 𝑉𝑉2,𝑖𝑖(𝑘𝑘)� 
(3-8) 

 

𝑢𝑢2,𝑖𝑖(𝑘𝑘 + 1) = 𝑢𝑢2,𝑖𝑖(𝑘𝑘) +
Δ𝑇𝑇
𝜏𝜏𝑖𝑖
�𝑉𝑉2,𝑖𝑖(𝑘𝑘) − 𝑢𝑢2,𝑖𝑖(𝑘𝑘)� +

Δ𝑇𝑇
𝐿𝐿𝑖𝑖
𝑢𝑢2,𝑖𝑖(𝑘𝑘)�𝑢𝑢2,𝑖𝑖−1(𝑘𝑘) − 𝑢𝑢2,𝑖𝑖(𝑘𝑘)�

−
𝛾𝛾𝑖𝑖Δ𝑇𝑇
𝜏𝜏𝑖𝑖𝐿𝐿𝑖𝑖

�𝑑𝑑1,𝑖𝑖+1(𝑘𝑘) + 𝑑𝑑2,𝑖𝑖+1(𝑘𝑘) − 𝑑𝑑1,𝑖𝑖(𝑘𝑘) − 𝑑𝑑2,𝑖𝑖(𝑘𝑘)�
�𝑑𝑑1,𝑖𝑖(𝑘𝑘) + 𝑑𝑑2,𝑖𝑖(𝑘𝑘)�

  
(3-9) 

𝑞𝑞𝑗𝑗 ,𝑖𝑖(𝑘𝑘) = 𝜆𝜆𝑖𝑖𝑑𝑑𝑗𝑗 ,𝑖𝑖(𝑘𝑘)𝑢𝑢𝑗𝑗 ,𝑖𝑖(𝑘𝑘) (3-10) 



 

12 
 

To reflect the interactions between CAVs and HVs, the term of speed difference is introduced 
into Eq. (3-8). Considering some HVs would follow CAVs in the traffic stream, the speed 
difference term can be simplified as a set of impact factors, β(k). As discussed in previous 
sections, β(k) shall be varied with the change in congestion level and CAV penetration rate. To 
calibrate the values of β(k), one shall obtain the flows and mean speeds of all vehicles from 
road side traffic sensors and flows and mean speeds of CAVs based on their trajectories. In this 
project, due to the lack of field data, we adopted the values of β(k) in Lu (2016) which are 
calibrated by extensive simulation experiments. 

For each segment with CAVs involved, one can reconstruct Eq. (3-6) as follows to represent the 
flow of two different class of vehicles: 

𝑞𝑞1,𝑖𝑖 ,𝑖𝑖𝑖𝑖 (𝑘𝑘) = (1 − 𝛼𝛼𝑖𝑖)�𝑞𝑞1,𝑖𝑖−1,𝑜𝑜𝑢𝑢𝑜𝑜 (𝑘𝑘) + 𝑞𝑞2,𝑖𝑖−1,𝑜𝑜𝑢𝑢𝑜𝑜 (𝑘𝑘)�      (3-11) 

𝑞𝑞2,𝑖𝑖 ,𝑖𝑖𝑖𝑖 (𝑘𝑘) = 𝛼𝛼𝑖𝑖�𝑞𝑞1,𝑖𝑖−1,𝑜𝑜𝑢𝑢𝑜𝑜 (𝑘𝑘) + 𝑞𝑞2,𝑖𝑖−1,𝑜𝑜𝑢𝑢𝑜𝑜 (𝑘𝑘)�      (3-12) 

3.3 CAV DESIRE SPEED OPTIMIZATION  

3.3.1 Optimization Model with Prediction 

Based on the traffic state at the current time interval, one can further implement the traffic flow 
model, Eqs. (3-5)~(3-12), to predict the traffic state within the next prediction horizon with 
respect to different CAV desired speeds. Then, the one with the best objective output can be 
selected for implementation. Hence, the first step of the optimization model is to select a proper 
control objective function. 

As the primary focus of CAV speed control is to reduce freeway travel time and increase flow 
stability, this project adopts the following objective of minimizing total travel time over the 
controlled segment: 

min∑∑𝜆𝜆𝑖𝑖�𝑑𝑑1,𝑖𝑖(𝑘𝑘) + 𝑑𝑑2,𝑖𝑖(𝑘𝑘)�Δ𝑇𝑇       (3-13) 

To implement the optimization model and select the proper control speed for the projected 
control period, one shall place the following additional constraints: 

�
𝑢𝑢𝑗𝑗𝑎𝑎𝑗𝑗 ≤ 𝑢𝑢𝑗𝑗 ,𝑖𝑖(𝑘𝑘) ≤ 𝑢𝑢𝑓𝑓 ,𝑗𝑗𝑖𝑖 ,                   𝑠𝑠𝑠𝑠𝑠𝑠𝑗𝑗𝑠𝑠𝑖𝑖𝑜𝑜 𝑖𝑖 𝑤𝑤𝑖𝑖𝑜𝑜ℎ𝑜𝑜𝑢𝑢𝑜𝑜 𝐶𝐶𝐶𝐶𝑉𝑉 𝑖𝑖𝑖𝑖𝑖𝑖𝑜𝑜𝑖𝑖𝑖𝑖𝑠𝑠𝑑𝑑
𝑢𝑢𝑗𝑗𝑎𝑎𝑗𝑗 ≤ 𝑢𝑢𝑗𝑗 ,𝑖𝑖(𝑘𝑘) ≤ 𝑢𝑢𝑓𝑓 ,𝑗𝑗𝑖𝑖 𝑖𝑖𝑖𝑖(𝑘𝑘),               𝑠𝑠𝑠𝑠𝑠𝑠𝑗𝑗𝑠𝑠𝑖𝑖𝑜𝑜 𝑖𝑖 𝑤𝑤𝑖𝑖𝑜𝑜ℎ 𝐶𝐶𝐶𝐶𝑉𝑉             

       (3-14) 

where, 

0 < 𝑖𝑖𝑖𝑖(𝑘𝑘) ≤ 1        (3-15) 

One shall also set the density boundaries to reflect the jam density constraint as follows: 

0 ≤ 𝑑𝑑𝑗𝑗 ,𝑖𝑖 ≤ 𝑑𝑑𝑗𝑗𝑎𝑎𝑗𝑗       (3-16) 
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Also, for safety concern, the speed variation between consecutive intervals shall be set within the 
following boundaries: 

−𝛿𝛿 ≤ 𝑢𝑢𝑓𝑓 ,𝑗𝑗𝑖𝑖 𝑖𝑖𝑖𝑖(𝑘𝑘)− 𝑢𝑢𝑓𝑓 ,𝑗𝑗𝑖𝑖 𝑖𝑖𝑖𝑖(𝑘𝑘 − 1) ≤ 𝛿𝛿        (3-17) 

Note that the speed variation between consecutive intervals shall be limited within a given range, 
such as 5 mi/hr. In addition, considering the feasible solution set is quite small, one can adopt an 
enumerative search for obtaining the optimal solution. The control variables in the control model 
are listed in following table: 

Table 3.3: Control variables for constraints 
Variables and parameters Definitions 
vi(k) VSL ratio in segment i during interval k 
djam Jam traffic density 
dc Critical traffic density 
uf Free flow speed 
Δ Maximum allowable difference for VSL change 

 

3.3.2 Rolling Horizon Control Logic 

In the proposed optimization model, the generated CAV optimal desired speeds cannot be 
changed frequently, due to the consideration of traffic safety and HVs’ reactions to the speed 
change. Therefore, a control horizon TC (e.g., 1 min) is defined to remain the unchanged of CAV 
desired speeds. Also note that the optimization model will be activated once all data collected by 
CAVs and detectors have been updated. Hence, during each control horizon, the optimization 
model will produce multiple estimates of the optimal speed limit over a longer prediction horizon 
(e.g., 10 mins), and the process to select the robust one prior to its execution is shown in the 
succeeding text. Such rolling horizon control logic is illustrated in the following figure: 

Time(min)k k+1 k+5 k+10

1st Iteration
Opt. v(1)

A new Speed will be 
displayed

2nd Iteration

3rd Iteration

4th Iteration

5th Iteration

Opt. v(2)

Opt. v(3)

Opt. v(4)

Opt. v(5)

KF

KF

KF

KF

KF

 

Figure 3.3: The rolling horizon control concept 
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For example, assuming that the control horizon is set to be two minutes and the prediction 
horizon is set to be 10 minutes, the proposed model would project the resulting travel times over 
the next 10 minutes with respect to different CAV desired speed profile. After the optimal one is 
selected, it would be implemented for only two minutes.  

Given the set of computed optimal speed limits for the same horizon, {v(1), v(2),…,v(n)}, one 
can determine the speed limits to be displayed based on the following procedure: 

• Define a counter M to identify the moving direction of the speed limit, and then denote vt 
as the displayed speed limit of the current horizon, where M is updated by the following 
expression: 

𝑀𝑀 = �
𝑀𝑀 + 1,      𝑖𝑖𝑓𝑓  𝑖𝑖(𝑖𝑖) > 𝑖𝑖𝑜𝑜     
𝑀𝑀          𝑖𝑖𝑓𝑓  𝑖𝑖(𝑖𝑖) = 𝑖𝑖𝑜𝑜     
𝑀𝑀 − 1       𝑖𝑖𝑓𝑓   𝑖𝑖(𝑖𝑖) < 𝑖𝑖𝑜𝑜    

 

       (3-18) 

• The new displayed speed limit for the next horizon will readjusted with the 
predetermined increment ∆, based on the value of M: 

𝑖𝑖𝑜𝑜+1 = �
𝑖𝑖𝑜𝑜 + ∆,      𝑖𝑖𝑓𝑓  𝑀𝑀 > 0      
𝑖𝑖𝑜𝑜           𝑖𝑖𝑓𝑓   𝑀𝑀 = 0     
𝑖𝑖𝑜𝑜 − ∆       𝑖𝑖𝑓𝑓   𝑀𝑀 < 0     

 

       (3-19) 

3.4  HIGHWAY CAPACITY UNDER CAV IMPACT  

According to existing studies, the application of CAV technologies can improve highway 
capacity and efficiency. Chen et al. (2017) conducted a comprehensive study to show how CAVs 
improve highway capacity and efficiency at a macroscopic level. They found that capacity 
related to CAV penetration rate, platoon size, inter-vehicle spacing, and lane policies and traffic 
mixed with CAVs and HVs can lead to higher capacity and strict segregation of CVs and HVs 
will bring lower capacity. Based on the extended analysis, they get the conclusion that CAVs 
utilize the most  efficient lanes on highway, leading them to make the best use of roadway 
efficiency and gain the highest capacity. On the contrary, Ghiasi et al. (2017) came to the 
opposite conclusion, based on the analytical stochastic formulation for mixed traffic highway 
capacity, that higher CAV penetration rates and platooning intensities do not always help 
improve highway capacity. Therefore, the CAV penetration rate needs to be further analyzed to 
understand how it can impact highway capacity and efficiency.  

For convenience of discussion, this project selects single-lane highways and two-lane highways 
for study. For a single-lane highway segment, its capacity can be estimated by the inter-vehicle 
spacing. Many existing studies defined this spacing as the distance between the reference points 
of an immediate follower and its leader, such as from front bumper to front bumper. The spacing 
as shown in Figure 3.4, S0 denotes the spacing between HVs; S1 indicates the spacing between 
HV and CAV (CAV ahead); S2 denotes the spacing between CAV; and S3 denotes the spacing 
between CAV and HV (HV ahead). By assuming both CAVs and HVs drive at a constant free 



 

15 
 

flow speed and based on the previous study finished by Chen et al. (2017), the relations among 
all type of spacings can be expressed as S2 < S0 < S3 < S1. It means the CAV can save inter-
vehicle spacing, which further indicates that CAV can help improve roadway capacity. When 
multiple CAVs are bunched, a cooperative adaptive cruise control (CACC) control can be 
activated and spacing between CAVs will be S2. 

 

Figure 3.4: Inter-vehicle spacing in traffic mixed with CAVs and HVs 

Such a phenomenon can be further proved in the fundamental diagram, as shown in Figure 3.5, 
where C0 denotes lane capacity with HVs only; C1 denotes lane capacity with HVs and CAVs; q 
denotes the traffic flow; u0 denotes the free-flow speed until reaching critical capacity with HVs 
only; u1 denotes the free-flow speed until reaching critical capacity with RVs and CAVs; w0 
denotes the free-flow speed until reaching congested with HVs only; w1 denotes the free-flow 
speed until reaching congested with HVs and CAVs; and d denotes the corresponding density 
under these two different traffic environments. With reduced vehicle spacing, it can be observed 
in Figure 3.5 that the highway capacity with mixed CAVs and HVs are higher than the case with 
HVs only. 

 

Figure 3.5: Fundamental diagram with HV only and mixed with CAV and HV 

For a two-lane highway segment, the capacity estimation under CAV impact becomes more 
complicated and is subject to many factors. However, on a multilane highway segment, HVs can 
choose to make lane changes when it follows a slow CAV. Figure 3.6 illustrates a case in which 
CAVs are traveling at a lower speed compared with HVs. Due to the light traffic condition, HVs 
can easily pass CAVs by making a few lane-changing maneuvers. Hence, the impact of CV 
speed control on the entire traffic stream is quite minimal in such cases. In contrast, Figure 3.7 
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shows a congested highway segment where HVs have to follow CAVs due to the difficulty of 
making lane changes. Under such conditions, it can be expected that the speed control of CAVs 
can greatly affect the entire traffic flow. 

 

Figure 3.6: Fundamental diagram with HV only and mixed with CAV and HV 

 

 

Figure 3.7: Fundamental diagram with HV only and mixed with CAV and HV 

From the microscopic level, movement of traffic streams can be characterized by both car-
following models and lane-changing models. Under the mixed CAV and HV pattern, car-
following behaviors can be categorized as four categories: CAV follows CAV, CAV follows 
HV, HV follows CAV, and HV follows HV. Similar to the case of a one-lane highway, the main 
variation of these four following scenarios is the different minimum following spacing. For 
modeling the discretionary lane-changing behaviors, a probabilistic form has been widely used in 
existing simulation tools, where the probability is subject to the lane speed variations and 
number of safe lane-changing gaps. Applying the same logic to analyze the mixed CAV and HV 
traffic pattern, it can be concluded that more HV lane-changing behaviors may be observed if 1) 
CAVs are operated at lower speeds; and 2) the number of safe lane-changing gaps is sufficient. 
Therefore, given the CAV optimal speed control pattern and highway traffic demand profile, 
there shall exist a critical CAV penetration rate that can maximize the CAV impact to the traffic 
stream without increasing lane changing significantly. 

4.0 EXPERIMENTAL TESTS 
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4.1 STUDY SITE 

To evaluate the effectiveness of the proposed system in improving freeway operational 
efficiency, this project selects one freeway segment of I-15 in Salt Lake City as the study site. As 
shown in Figure. 4.1, the whole stretch is divided into eight segments, where each has a length of 
500 meters. Notably, the freeway stretch includes one on-ramp on the third segment and one off-
ramp on the fifth segment. Model parameters, τ, ν, κ, and δ, are set as 20 s, 35 km2/h, 13 
veh/km/lane, and 1.4, respectively, for the whole stretch. Other parameters uf, dcr, and a are 
calibrated to be 120 km/h, 33.5 veh/km and 1.4324, respectively, based on the field data 
collected by the Utah Department of Transportation (UDOT). Each segment upstream of 
Segment 8 has a resulting capacity of 2,000 veh/h/lane, while each segment downstream of 
Segment 8 (including Segment 8) has a capacity of 1,500 veh/h/lane. In addition, the set of 
factors β(k) which can reflect the impact degree of speed difference between connected vehicles 
and regular cars can be given 0.5 initially (calibrated by Lu, 2016) based on the specific traffic 
condition of the numerical example. Because of the existing of CAVs in the mixed flow which 
are provided with optimal desired speeds, all segments are assumed to have CAVs involved. 
Figure. 4.2 shows the inflow of Segment 1 and on-ramp, while the off-ramp exiting rate is 
12percent. 
 

  

 

Figure 4.1: Freeway stretch at the study site 

 

Figure 4.2: The inflows of the study site 

4.2 SIMULATION RESULTS ANALYSIS 

To evaluate the performance of the proposed models, we conducted extensive Monte Carlo 
simulations grounded on the macroscopic traffic flow model. Firstly, based on the objective of 
minimizing the total travel time, the distribution of mean speeds on each freeway segment under 
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different percentages of CAVs in mixed flow (20percent, 50percent, 70percent and 100percent) 
are shown in Figure. 4.3-Figure. 4.6. Based on the simulation results, one can observe that the 
time period (i.e., 100-250 time step) is identified to be peak period. The concurrent congestion 
was formed at Segment 8 and was propagated back to Segment 1. Comparing the distributions of 
mean speed under No-CAVs control and With-CAVs control, one can reflect that the With-
CAVs control with different percentages of connected vehicles in mixed flow all can strongly 
offer a higher speed during high traffic demand periods. In addition, increasing the penetration 
rate of CAVs can help improve the system’s operational efficiency. 
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Figure 4.3: Mean speed with 20percent of connected vehicles in mixed flow 
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Figure 4.4: Mean speed with 50percent of connected vehicles in mixed flow 
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22 
 

  

Figure 4.5: Mean speed with 70percent of connected vehicles in mixed flow 
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Figure 4.6: Mean speed with 100percent of connected vehicles in mixed flow 

To further evaluate traffic control efficiency more effectively, the time-dependent travel time is 
one of the most important measure of effectiveness (MOE). As the time-dependent travel time is 
directly affected by the time-dependent density on each segment, Figure. 4.7 to Figure. 4.10 
show the resulting density under the No-CAVs control and With-CAVs control models with the 
objective of minimizing travel time under different percentages of CAVs in mixed flow. 
Notably, the density starts to increase when the freeway has high traffic demands which were 
determined by the inflows. Compared with the No-CAVs control, the density is reduced under 
the With-CAVs control. 
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Figure 4.7: Density with 20percent of connected vehicles in mixed flow 
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Figure 4.8: Density with 50percent of connected vehicles in mixed flow 
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Figure 4.9: Density with 70percent of connected vehicles in mixed flow 
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Figure 4.10: Density with 100percent of connected vehicles in mixed flow 

To compare the performance of CAVs speed control with different percentages of CAV in mixed 
flow, the average delay is selected as another MOE to reflect the improvement in traffic 
conditions. The comparisons are shown by Table 4.1 and Table 4.2. In these tables, one can 
observe that a higher ratio of CAVs in mixed will yield more improvement in delay time 
reductions. Hence, higher percentages of CAV in mixed flow will have more improvement in 
traffic efficiency with the objective of minimizing total travel time .     

Table 4.1: Average delay during time periods with different ratio of connected vehicles in mixed flow 
Ave Delay 1-10 (min) 11-20 (min) 21-30 (min) 31-40 (min) 41-50 (min) 51-60 (min) 
No CAVs 38.40 sec 26.72 sec  92.74 sec 94.11 sec 29.61 sec 26.33 sec  
20% CAVs 29.95 sec 19.61 sec 77.84 sec 71.50 sec 21.96 sec 19.25 sec  
50% CAVS 28.77 sec 18.25 sec 76.32 sec 70.45 sec 20.56 sec 17.88 sec  
70% CAVs 27.35 sec 16.91 sec 71.89 sec 62.77 sec 19.09 sec 16.55 sec  
100% CAVs 24.36 sec 14.28 sec 61.32 sec 45.81 sec 16.15 sec 13.94 sec  
 
Table 4.2: Percentage improvement on average delay comparing CAVs controls with no CAVs controls 
Ave Delay 1-10 (min) 11-20 (min) 21-30 (min) 31-40 (min) 41-50 (min) 51-60 (min) 
No CAVs / / / / / / 
20% CAVs 22.01% 26.61% 16.07% 24.03% 25.84% 26.89% 
50% CAVS 25.08% 31.70% 17.71% 25.14% 30.56% 32.09% 
70% CAVs 28.78% 36.71% 22.48% 33.30% 35.53% 37.14% 
100% CAVs 36.56% 46.56% 33.88% 51.32% 45.46% 47.06% 
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4.3 ANALYSIS CAV IMPACT TO HIGHWAY CAPACITY 

To further study the CAV impact on the HVs, this study has simulated the mixed traffic flow 
under various traffic patterns, as shown in Table 4.3. 

Table 4.3: Mixed traffic flow simulation scenarios 
Demand Level (two lanes) CV Penetration Rate CV Flows (two lanes) 

1,500 veh/hr 5%-80% with 5% increment 75 – 1,200 veh/hr 
2,000 veh/hr 5%-80% with 5% increment 100 – 1,600 veh/hr 
2,500 veh/hr 5%-80% with 5% increment 125 – 2,000 veh/hr 
3,000 veh/hr 5%-80% with 5% increment 150 – 2,400 veh/hr 
3,500 veh/hr 5%-80% with 5% increment 175 – 2,800 veh/hr 
4,000 veh/hr 5%-80% with 5% increment 200 – 3,200 veh/hr 

 

In the control model, CAV speed impact on the HV group is represented by the key factor 
β(k). Notably, the value of the factors shall be subject to both demand levels and CV ratios. 
Following the similar procedure of an existing study (Yang, 2016), β(k) is calibrated with 
microscopic simulations and the corresponding value within different simulation scenarios are 
shown in Figure 4.11. 

 

Figure 4.11: The distribution of βi in different scenarios 

Selecting average travel time of all vehicles along studied freeway segments as the 
performance index, this study has simulated all scenarios designed in Table 4.3 and the results 
are summarized in Figure 4.12. By comparing the cases of different CAV penetration rates, it can 
be observed that the average travel time will be reduced with the increase of the CV penetration 
rate, which prove the benefit of implementing CAV technology. Notably, at the low demand 
level, such a benefit is not significant. For example, with the 1,500 veh/hr traffic demand, the 
corresponding travel times of 5percent and 80percent CAV ratios are obtained as 129.1 seconds 
and 121.4 seconds, respectively. In contrast, in the cases with 4,000 veh/hr upstream arriving 
flow, the travel time difference by these two CAV ratios is 18 seconds. Hence, in a more traffic 
congested environment, the optimal CAV speed control system can yield more benefits on 
reducing vehicle delays. However, it shall be noted that all scenarios are simulated at 
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undersaturated conditions. When traffic demand exceeds freeway capacity, the operational 
benefits of CAVs may be minimized. 
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Figure 4.12: Freeway average travel time under different scenarios 

To study the CAV impact on HVs and understand their interactions, this research also 
compared the travel time performance of four different vehicle groups: 1) all vehicles without 
CV involved; 2) all vehicles with CAV optimal control; 3) CAVs under optimal speed control; 
and 4) HVs under CAV optimal control. Figure 8 presents the resulting average travel time under 
different CAV rates and demand levels. By comparing the cases under CAV control with the 
ones without CAVs, it can be noted that providing advisory speeds to CAVs can help reduce 
travel time of the entire traffic stream. Also, CAVs experienced much lower travel time 
compared with HVs in all scenarios. This is due to the capability of optimal speed control on 
mitigating shock wave impacts caused by bottleneck locations. With the increase of the CAV 
penetration rate, the reduction of CAV travel time is quite minimal under low demand 
conditions. With higher upstream traffic flow, the optimal CAV speed harmonization will yield 
more travel time reduction when the CAV ratio is increased. In addition, further performance 
comparison between the CAV and HV groups revealed that the CAV impact, indicated by HV 
travel time reduction along with CAV optimal control, becomes more significant when the 
system involves a larger portion of CAVs. Under each level of demand, there exists a critical 
CAV penetration rate that can greatly reduce the speed difference between CAVs and HVs. 
Based on Figure 4.13 (a)~(f), the critical CAV rates under various demand patterns and 
corresponding average travel time of different vehicle groups are summarized in Table 4.3. 
Table 4.3: The simulation results of the scenarios with critical CAV ratio  

Demand level 1500 2000 2500 3000 3500 4000 
Critical CAV Ratio 60% 50% 40% 35% 30% 20% 

All traffic TT with no CAV 130.08 134.20 139.60 147.01 157.92 179.17 
All traffic TT with CAV 121.92 126.27 131.98 139.14 149.37 168.34 

TT of CAV 121.28 125.05 129.96 136.55 146.06 163.27 
TT of HV 122.86 127.49 133.36 140.59 150.85 169.72 

TT Difference between CAV and HV  1.3% 2.4% 3.4% 4% 4.7% 6.4% 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 4.13: Average travel time comparison between different vehicle groups 

To better illustrate the existence of a critical CAV penetration rate and demonstrate how it 
can impact highway performance, Figure 4.14 summarizes the reduced average travel time of all 
vehicles under different scenarios, compared with the cases of no CAV control. Notably, under 
each level of demand, the travel time reduction suddenly becomes significant after the CAV ratio 
reaches the critical value. After passing the critical CV rates, the average travel time will keep 
reducing with the increase in CAV rates. However, under the low demand scenarios, such travel 
time reduction is not significant. 
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Figure 4.14: Reduced average travel time under different scenarios and critical CV rates 

To further analyze the CAV speed impact on HVs under critical CAV rate conditions, Figure 
10 presents the time-dependent travel time of all traffic, CAVs and HVs. In each case, it is 
shown that CAV optimal control can help reduce the travel time of both CAVs and HVs. Also, 
HVs have very similar travel time compared with CAVs. Hence, one can conclude that HVs 
were very likely to follow CAVs within the traffic stream when the CAV rate reached a critical 
value under each level of demand. 

 
(a) level of demand: 1,500 veh/hr 

 
(b) level of demand: 2,000 veh/hr 
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(c) level of demand: 2,500 veh/hr 

 
(d) level of demand: 3,000 veh/hr 

 
(e) level of demand: 3,500 veh/hr 

 
(f) level of demand: 4,000 veh/hr 

Figure 4.15: Time-dependent travel time under different levels of demand 

In summary, we can summarize the following key findings based on the comprehensive 
simulation analysis;  

• within the mixed CAV and HV traffic pattern, performing optimal speed control to CAVs 
will concurrently benefit HVs since they are sharing the roadway; 
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• given a demand pattern on a target freeway segment, there should exist a critical CAV 
penetration rate that can greatly improve the performance of CAV-based control systems; 

• once the CAV penetration rate reached the critical value, the speed difference between HVs 
and CAVs will become insignificant; and 

• mixed traffic under high demand level (but still below the capacity) intends to have a smaller 
critical CAV rate compared with the case under low demand level. 

Notably, although this study has utilized numerical tests to show the existence of a critical CAV 
penetration rate and indicated its value was subject to demand levels, it is essential to complete 
theoretical proof in future studies. Also, more simulation and field studies shall be conducted to 
provide guidance on how to determine the critical CAV ratio so as to maximize highway 
capacity. 

5.0 CONCLUSIONS 

5.1 KEY FINDINGS 

In summary, this project mainly focused on developing a control framework to produce an 
optimal desired speed profile for CAVs when operating on the freeways. The proposed 
optimization model was based on a novel traffic state estimation model that can explicitly show 
the speed interactions between CAVs and HVs. Specifically, when an optimal desired speed is 
placed on a CAV, it may affect the speed of nearby HVs as they are sharing the road. 
Considering that a conventional macroscopic traffic flow model would fall short of capturing 
such situations, this project implemented an extended model that treats CAVs and HVs as 
separate vehicle classes and their interdependency of speeds is represented by a set of impact 
factors. Using simulations to evaluate the proposed system, results analysis revealed that the 
proposed models can effectively reduce freeway travel time of both CAVs and HVs, compared 
with the no-CAV cases. Further sensitivity analysis on CAV penetration rates also indicated that 
improving the CAV penetration rate would benefit the reduction of traffic delays. The proposed 
models can serve as the foundation of many other CAV applications on freeways, such as 
Cooperative Adaptive Cruise Control (CACC). 

This project also studied the CAV impact on highway operational performance under a mixed 
CAV and HV environment. According to the different traffic characteristics between CAVs and 
HVs, our research firstly analyzed how implementation of CAVs can affect highway capacity 
under both one-lane and multilane cases. Then a hypothesis was made that there shall exist a 
critical CAV penetration rate that can maximize the benefits of CAV implementations. To prove 
this concept with numerical analysis, this study implemented the macroscopic traffic flow model 
along with an embedded CAV speed optimization function to simulate the mixed traffic pattern 
under various conditions. The simulation results revealed that performing optimal speed control 
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to CAVs will concurrently benefit HVs due to their interactions in the traffic streams. The 
highway capacity will consequently be increased. Also, given a demand pattern on a target 
freeway segment, there should exist a critical CAV penetration rate that can greatly reduce the 
speed difference between HVs and CAVs. With the increasing of traffic demand volumes, such a 
critical CAV rate intends to be smaller on the same freeway stretch 

5.2 FUTURE RESEARCH DIRECTIONS 

Future research directions include: 1) develop theoretical methods to model the CAV impact 
within the traffic stream; 2) prove the existence of a critical CAV penetration rate that can 
maximize the CAV implementation benefits; and 3) produce either close-formed equations or 
guidelines to estimate highway capacity under a mixed CAV and HV environment. 
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